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SUMMARY

' s

The tumbling motion of vehicles entering planetary atmospheres is

analyzed. A differential equation governing the tumbling motion, its

arrest, and the subsequent oscillatory motion is obtained and identified

as the equation for the fifth Painlev_ transcendant. An approximate

analytical solution for the transcendant is derived. Comparisons with

results obtained from numerical integration of the exact equations of

motion indicate that the solution for the angle-of-attack history is

sufficiently accurate to be of practical use.

INTRODUCTION

The oscillatory behavior of vehicles entering planetary atmospheres

has been studied intensively in view of its importance in structural and

guidance system design. Previous analytical studies, aimed at gaining a

clearer understanding of the problem, have been limited to cases where

the vehicle either (i) enters the atmosphere without angular velocity

(ref. i) or (2) has progressed far enough into the atmosphere so that

any initial tumbling motion has been arrested and the oscillatory motion

has been reduced to small excursions from a mean path (refs. 2 to 4).

In either case, therefore, the part of the motion history during which

the vehicle initially may be tumbling has been excluded from study. This

has not been considered a serious limitation, however, since for the

vehicles to which the analyses were applied, namely, ballistic missiles

and manned spacecraft, it could be assumed that some sort of controlling

device would be available to prevent both tumbling and large oscillatory

excursions of the angle of attack.

Recently, it has been proposed to send instrumented probe vehicles

into the atmospheres of the near-earth planets (ref. _). It is

envisioned that the probe vehicle will be brought to the vicinity of a

planet by a larger vehicle and then released. In the interest of

simplicity, active control of the probe vehicle's motion after its

release would not be provided, the vehicle depending instead on its

inherent aerodynamic stability to right itself in the appropriate



orientation after penetrating the planetary atmosphere. It is easy to
see that in such a case, the vehicle probably will be tumbling as it
enters the atmosphere and that this tumbling motion could play a large
role in the design of the vehicle. For example, the weight and extent
of the heat shield would depend in great measureon the prediction of
the relationship between the altitude range over which the vehicle tumbles
and subsequently oscillates with possibly large amplitudes and the
altitude range over which heating rates becomehigh. For this problem_
the analyses mentioned above are clearly inapplicable. An adequate
analytical treatment must provide for the possibility of the vehicle
having initially an angular velocity, and for the possibility of its
experiencing angle-of-attack oscillations of large amplitude after the
tumbling motion is arrested.

A detailed numerical study of the tumbling problem was recently
completed for a particular vehicle considered representative of one
proposed as a Mars probe (ref. 6). As a corollary to that study, an
analytical investigation was undertaken with the intent of defining more
clearly the underlying mechanismgoverning the tumbling motion, its
arrest, and the subsequent oscillatory motion. The purpose of this
report is to present the results of the analytical investigation.

SYMBOLS

A

CD

CL

C m

Cm_

Cmmax

g

I

Io(X)

reference area

drag coefficient, dra___gg
qA

lift

lift coefficient, --_--

pitching-moment coefficient, pitching moment

qAz

rate of change of pitching-moment coefficient with angle of

attack, C_)_ o

maximum value of pitching-moment coefficient

acceleration due to gravity

pitching moment of inertia about center of gravity

modified Bessel function of first kind of zero order
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Jo(X)

J_(x)

_1(x)

Z

m

n

q

r

s

t

Ii

V

v

X,Z

x

Yo(x)

Y_(x)

Y

Zo(x)

_o(X)

z1(x)

Bessel function of first kind of zero order

Bessel function of first kind of first order

Bessel function of third kind of zero order

Bessel function of third kind of first order

parameter defined by equations (19) and (38)

body length and reference length for moment-coefficient

evaluat ion

vehicle mass

integer

1

dynamic pressure, _ pV2

distance from center of planet to vehicle

dynamic pressure parameter_ _v i

time

horizontal component of flight velocity (sketch (a))

flight velocity (sketch (a))

vertical component of flight velocity (sketch (a))

axes fixed in space with origin at center of planet (sketch (a))

independent variable (eq. (i0))

value of x at which ka(x) = i

Bessel function of second kind of zero order

Bessel function of second kind of first order

alt itude

_o(X) + BYo(X)

_Jo(x)+ _Yo(_)

AJ1(x)+ BY_(x)
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angle of attack (sketch (a))

densityparameter(eq.(7))

flight-path_gle (sketch(a))

dependentvariable(eq.(16))

dependentvariable(e_.(35))

angle of pitch measured from axis fixed in space (sketch (a))

angle of pitch measured from local horizontal (sketch (a))

value of x at t = 0 (eq. (lO))

atmospheric density

atmospheric density at surface of planet

value of x at which x = ae-_(<)/_'(K)

angular displacement of vehicle from fixed space axis_ e -

(sketch (a))

_()
dt

_()
_x

initial value

ANALYSIS

An analytical study of the tumbling problem is intractable in all

generality. Hence_ simplifying assumptions must be introduced. It is

assumed at the outset that (i) the rotation of the planet and of its

atmosphere can be neglected; (2) nothing essential to an understanding

of the tumbling motion is lost by considering the motion to be planar;

(3) the acceleration due to gravity is constant. Further assumptions

and approximations will be introduced as necessary.



Equations of Motion

Under the above assumptions_ the equations defining the vehicle's
path and its motions about that path maybe written as

-mV - CDqA+mg sin 7 = 0

mV_+ CLqA+ m (_- g_ cos 7 = 0

I_- qAZCm = 0

(i)

The angles _, 7, 8, _, 8 are defined in sketch (a).

Z

, @

/ i/>_-Axes fixedin spoce,originot plonetcenter

X

Sketch (a)

Simplified angle-of-attack equation.- Numerical solutions of

equations (i) indicate that after the vehicle enters the planetary

atmosphere_ there is always an interval over which the flight-path

angle 7 and the flight speed V do not change significantly. Since

this is the period of time over which any tumbling motion would occur,

it is an appropriate approximtion to take
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Accordingly, since

7 m const. = 7i

V = const. = Vi

= u/r, _ will be essentially zero, so that

(2)

--'_{ (3)

Next, it will be assumed that aerodynamic damping-moment terms are

negligible over the range of Luterest_ so that the aerodynamic moment

in equations (1) is a function of angle of attack only. This_ in

conjunction with equation (3), permits the last of equations (1) to be

considered independently of the other two. That equation takes the form

AZ O (4)
I

Aerodynamic restoring-moment coefficient.- The fact that the vehicle

can be tumbling as it enters the atmosphere requires that the aerodynamic

restoring-moment coefficient be specified over the entire angle-of-attack

range. It is reasonable to anticipate that heating and stability

considerations will dictate the shape of the probe vehicle, hence, that

it will be short with a conic profile. Also, in order to minimize the

amount of heat protection required, it is advisable that the vehicle be

statically stable in one trim position only (cf., ref. 6). Inspection

of the experimental results collected in reference 6 for a vehicle

satisfying these requirements reveals that the aerodynamic restoring-

moment coefficient as a function of angle of attack is approximately a

sine wave. Accordingly, it will be assumed that Cm(_) in equation (4)

can be approximated by

Cm(a ) = Crams.x sin

where Cmma x is presumed to be available either from experimental data
or, for example, from Newtonian impact theory.

Dynamic pressure history.- Consistent with the approximations

underlying equations (2), the altitude history of the vehicle as a

function of time is

Y- Yi = -vit (6)

where

v i = V i sin 7 i
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The assumption that the planet's atmospheric density varies exponentially

with altitude

P = Po e-py (7)

then gives for the dynamic pressure over the range of interest

with

q(t) = qi e_vit (8)

l

qi = _ DoVi 2e-_yl

Alternatively, if a precise time history of the dynamic pressure is

available, a more accurate estimate of qi and _v i can be obtained by

fitting the best straight line to the initial portion of the dynamic

pressure history plotted on semi-logarithmic paper. In this regard, it

should be clear that equation (8) reveals one of the apparently more

severe limitations of the present analysis; namely, that it can be

expected to apply only over the portion of the time history in which

q(t) increases uniformly. However, it will be found that this interval

encompasses not only the interval over which tumbling occurs, but also

the subsequent range over which the oscillatory motion begins and is

reduced to small angles. The results of this analysis should be suited

to act as the connecting link between the vehicle's initial behavior and

the behavior adequately described by the analyses mentioned in the

Introduction (refs. 2 to 4).

Transformed equation.- Inserting equations (5) and (8) into

equation (4) gives

- qi $_ Cmmax e_vit sin _ = 0 (9)

which will be taken to be the differential equation characterizing the

vehicle's motion on entering the atmosphere. However, a transformation

of equation (9) yields a form that more quickly shows the nature of the

solution. Let

_vi = s

-qi _- Cm =max

x st/2
_ e

E

(io)
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Equation (9) takes the form

_''(x) + _'(X) + sin _ = 0
x

with the initial conditions

(ii)

_(_)--_i

KS

(12)

where, for convenience, m(_) is presumed to lie within the range

-_ < m(_) < _. Note that all the parameters of the problem have been
concentrated in the constant _ and the initial conditions. Equations

(ii) and (!2) indicate that all combinations of vehicle and planetary

properties yielding the same value of _ and the same initial conditions
_(_), _'(_) will yield identical solutions for _ as a function of x,

though not necessarily as a function of time.

The Painlev6 Transcendants

The substitution w = sin _/2 in equation (ii) transforms it to

where

_,,(_)--T,(w)p_+ M(_)p+ N(w)

dw
p = __

d_x

n(w) - w
2-1

M(x) -- i
x

(!3)

N(w)= _(_ - l)

In reference 7, it will be found that equation (13) is of the form

studied by the French mathematician Paul Painlev_ around 1900. l It is
llt is interesting to note that a Paul Painlev4, professor of

mechanics at the _cole Polytechnique_ was the passenger on the Wright

brothers' airplane that established a distance record of 34 miles at

Le Mans, France, in 1908 (of., ref. 8).
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categorized mathematically as being a member of the general class of

second-order differential equations having fixed critical points. This

class has been shown to possess _0 members. Of the _O_ all but 6 are

integrable in terms of known functions. The remaining 6 define new

functions_ termed "Painlev_ transcendants." The substitution

W = (w + 1)/(w - i) casts equation (13) in the form

w"(x) --w'2 + - - (14)
W x

and it will be seen in reference 7 that equation (14) is one of these,

namely, the fifth. Unfortunately, aside from this categorization, and

a comprehensive examination of the asymptotic behavior of the first

Painlev_ transcendant (ref. 9), no subsequent analyses of their properties

seem to have been published. It is hoped that this discovery of an

application of at least one of them will stimulate further more purely

mathematical study of their properties.

Mechanical Analogy

Before proceeding to develop approximate solutions of equation (9),

it may be helpful first to consider a simple mechanical analogy of that

equation whose behavior is, in effect, intuitively obvious. By this

means, the range and character of motions that a solution of equation (9)

will be called upon to describe can be revealed relatively simply.

Consider a small bead constrained to slide, without friction, on a

circular path in a vertical plane. Let a time-dependent force F(t) be

exerted downward on the bead. This situation is illustrated in sketch (b).

Eqmating the torque about the center of the

circle to the bead's rate of change of angular

momentum gives

(15)

Thus, if g + F(t)/m is caused to vary in

proportion to the vehicle's dynamic pressure

history, the motion _(t) governed by

equation (!_) will be analogous to that of

the vehicle with _ playing the role of _.

Sketch (b)
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For convenience, let _ = 0 (the bottom of the circle) at t = O.
Nowgive the bead an initial velocity sufficient to carry it several
times around the circle. Each time the bead traverses the circle,
will be counted as having increased by 2_. This, of course, corresponds
to one complete tumble of the vehicle. It is clear that, because F(t)
continually increases, more and more of the total energy will be in the
form of potential energy each time the bead nears the top of the circle.
Eventualiy_ therefore_ it will not have sufficient kinetic energy to
carry it over the top. At this point, it will reverse direction_ slide
downpast the low point_ and proceed to oscillate about the low point.
Again because the amplitude of the restoring torque grows indefinitely
with time, the amplitude of oscillation will diminish and the frequency
will increase with time. The final value of _ will be a multiple of
2_. This behavior is illustrated as curve A in sketch (c) for a case
where the bead has tumbled twice. Note in the sketch that once tumbling
is arrested, the bead's amplitude of oscillation about 2n_ cannot
exceed w.2 For a range of successively smaller initial velocities, the

57r

A

4Tr

/-B3rr

It

0

Sketch (c)

behavior of _(t) will

be qualitatively similar

to that just described,

the tumbling in each case

being arrested when

is between (2n - i)_

and (2n + i)_ and the

subsequent oscillation

being about 2n_. Even-

tually, however, as the

initial velocity is

successively reduced, a

specific initial velocity

will be reached for which

the kinetic energy near

the top of the circle

(i.e., _ = (2n - 1)_)

is just sufficient to

enable the bead to reach the top and come to rest there. The top being

a position of unstable equilibrium, the bead cannot oscillate about that

position, but must approach it uniformly from below. This is shown as

curve B on sketch (c). For a slightly smaller initial velocity, the

bead will not surmount the top and_ hence, must oscillate about the next

smaller multiple of 2_ (i.e., (2n - 2)_). This is shown as curve C

on sketch (c). Again, there will be a range of successively smaller

initial velocities for which the bead will oscillate about (2n - 2)_ _

2It will be observed that this explanation of the arrest of tumbling

does not require the presence of aerodynamic damping. This contradicts a

result presented in reference i0_ in which the cause of the arrest of

tumbling is attributed to a dissipation of rotational energy through

aerodynamic damping. The author of reference i0 is led to this conclusion

by the erroneous assumption that the net change of potential energy over

one complete revolution is small enough to be neglected.
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eventually terminating with an initial velocity which brings the bead
to rest, without oscillating, at (2n - 3)_ (curve D).

To summarizethis discussion as it applies now to the vehic!e_ it
is clear that for any initial angle of attack _i, there will be a
range of values of initial angular velocity _i which will cause
eventually to oscillate about a given value of 2n_. This range of
initial angular velocities is boundedby the two specific initial
angular velocities which, for the same _i, cause _ to cometo rest
without oscillating at (2n + i)_ and (2n - i)_. As discussed in
reference 6_ these latter cases, where the vehicle comesto rest in a
position of unstable equilibrium_ are somewhatunrealistic in practice.
However, they will be found to be important in analysis, since they
serve to define the multiple of 2_ about which _ eventually oscillates.

Approximate Solutions

The above discussion leads one to anticipate that the solution of
equation (ii) for cases where _ eventually oscillates about an even
multiple of _ will differ in form from cases where _ monotonically
approaches an odd multiple of _. Accordingly, the two cases will be
treated separately_ though by the sameprocedure.

Oscillatory solution.- Consider equation (ii), and to bring in

evidence that for the oscillatory solution _ _ 2n_ as x _ _, let

where, for the time being, n is presumed known. As indicated in the

preceding discussion, its value will be determined from the nonoscillatory

solution. The equation of motion becomes

+-- + sin e cos c = 0 (17)ET'

X

where mow c _ 0 as x _ _. A further subdivision of the analysis is

now in order to comply with the difference in character between the

asymptotic behavior of the solution and the tumbling behavior. The

analysis can be divided conveniently on the basis of the following

consideration: Multiplying equation (17) by e' and integrating once

yields

_- l I1- sin (iS)

where
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and

W(x) -- ki2 (19)

_jx ,2(u)du1 - 2ki 2
U

ki 2 = i

c'2(_) + sin 2 _(_) (20)

Let it be assumed first that ki2 < I. Equation (19) indicates that

k2(x) must be a continually increasing function. In the interval

ki 2 < k2(x) < i, sin 2 [ varies within the limits 0 < sin 2 _ < i. But

when- k2(x) --exceeds unity, equation (18) shows that --sin2 c Van no

longer equal unity, and must diminish as k2(x) increases. This is the

mthematical statement of the condition already noted that once the

oscillatory motion has begun, the amplitude of oscillation cannot exceed

_. Equation (18) thus reveals that tumbling is arrested and the

oscillatory motion begins at the value of x for which k2 = i. Let

this value be x = _. From equation (18), _ is determined from the
relation

_'(_)--_-cos _(._) (2l)

where the negative sign is used with [(_) > O_ the positive sign with

_(_) < O. On the other hand, if ki 2 _ i, equations (18) and (19) show

that no tumbling occurs; the oscillatory motion begins immediately.

Hence_ the tumbling motion is confined to the range _< x < _ and a

solution for this range need be obtained only for valu[s oF ki2 within

the limits 0 < ki 2 < i.

Tumbling behavior: Integrating equation (17) twice yields the

integral equation

Ji x

x u

_(x)= c(_)+ _'(_) log-_+ u log_ sin _ cos _ du (22)

Over the range _ < x < _, an adequate solution of equation (22) can be

obtained by succesSive--substitutions. Thus_ in the first approximation

_(x) = _(_) + _,(_) log s (23)
K

In the second approximation
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x
_2(x)= _(x) + u log-_sin _(_) oos _(u) du

X

--_1(x)+ T(x) (24)

Straightforward integration yields for L(x)

= 2 sin 2_(_) - c cos 2_(_)] log x
T,(x) 2(4 + °2) _-

[ x] }- sin 2e(m) + c log [ - _ + sin [2e(m) - _']

where

c = 2_'(_)

4c
sin q0=

+ c2

4 -- C2
COS Q> -----

4+02

A third approximation cannot be obtained analytically; fortunately in

most cases, the second approximation is sufficiently accurate. An

estimate of the magnitude of the third approximation can be obtained

since in the interval _ < x < _, L(x) is generally small. Thus

x
_(x) = c_(x)+ ! _ log-__i_ 2[_(_) + L(_)]du

2 x

-" e_(x) +_ [x log _ [sin 2ez(u) + 2T,(u) cos 2el(u)] du

2j_ 7

x _ L(u) 2_(_) d__2(x) + u log cos

(26)

The integral can be evaluated in terms of elementary functions. However,

as the result is exceedingly lengthy_ it will not be presented here.

Equation (24) (or (26)) approximates the vehicle's tumbling behavior

over the range m < x < _, the value of # being given by the relation

(21). -- -

Oscillatory behavior: The clue which leads to a satisfactory

approximation of the oscillatory behavior is again contained in the

condition already noted that the amplitude of oscillation cannot
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exceed _. Consider the transformation

f(x)
sin _ - (2_D

which automatically fulfills this condition. Substitution in equation (17)

gives

f,, 2ff '2 f,+-- + f = o (28)
l + f2 x

This is to be compared with the equation for the zero-order Bessei

function, in which the nonlinear term is absent. It is anticipated,

therefore, that the oscillatory behavior of f(x) should resemble that

of the Bessel function. To bring this in evidence, equation (28) is cast

in the form of an integral equation by use of the method of variation of

parameters. Thus

x
_( t:Jo :_o(_) Yo(X) )] d_f(x) -- Zo(X) - _. _ _) (x) - Jo(_ (29)

where

Zo(X)--AJo(X)+ BYo(_)

Z(x)= 2f(x)f'_(_)
i + _(_)

The method of successive substitutions, applied to equation (29), then

gives to a first approximation

f_(_)= Zo(_) (3o)

To a second approximation

xf2(x) -- Zo(X) - 2 _z_.(_) [jo(X)Yo(_) - Yo(X)%(_,)] d_ (3z)

with

1l(x) =
2Zo(x)z12(x)

i + Zo2(X)
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Unfortunately 3 the integral cannot be evaluated analytically. Howeverj

in magnitude it is generally considerably smaller than Zo(X ), and its

asymptotic behavior is of no larger order than that of Zo(X). Therefore,

equation (30) alone will be used to represent the oscillatory behavior of

f(x) .s The constants A and B in Zo(X) are determined by matching

equation (30) to the solution for tumbling at x = _. It will be observed

that for large x

sin _ _ _ _ Zo(X) (32)

Comparison of this result with the results of references i and 3 reveals

that the first approximation to the asymptotic behavior of equation (27)

agrees as it should with the previous results obtained under the

assumption of small-amplitude oscillations. 4

Summary of equations: For convenience, the solution for e(x) over

the entire range of x is tabulated below.

<x<_:

x T(x)c(x)= _(_)+ _'(_) log _ +

- 2 sin 2c(_) - c cos 2_(_)] log
2(_ + c_)

+ C log _- - + sin [2e(_) - qt_]

(33)

o = 2_,(_)

4c
sin q0-

+ C 2

4 -- C 2

COS _ =

+ C 2

Determine _ from: c'(_) = :; cos e(_) ; e(m) _ 0

SThe asymptotic behavior of the integral in both equations (29) and

(31) is, in fact, also that of a zero-order Bessel function combination.

The true asymptotic behavior of f(x) is therefore, say, Zo(x), wherein

the constants A and B are different from the A and B of equation (30).

In the present analysis, however, the added terms are neglected.

4The argument of Zo(X) in equation (30) contains C_max (of.,

eq. (i0)), whereas in references i and 3 the argument of the Bessel

functions contains Cm_. For the assumed sinusoidal variation of Cm

with _, however, Cmmax = (dCm/d_) I_ = o.
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I! + Zo2(x) I

Zo(X)= AJo(X)+ _Yo(X)
(34)

A - _-_ [Yl(x) tan e(_) + Yo(_) c'(2) sec 2 c(2)]
2

B _-[J_(_) tan _(_) + Jo(X) _'(_) sec _ c(_)]

Finally, it will be recalled that equations (33) and (34) have been

derived under the assumption that ki2 (eq. (20)) is less than unity.

If ki s > i, the oscillatory motion begins immediately. In this case,
equations (33) can be disregarded and the constants A and B in equations

(34) determined directly from the initial conditions; that is, replace

by _ in equations (34).

Nonoscillatory solution.- For the nonosci!latory solution,

_ (2n + i)_ as x _ _. To parallel the procedure just described for

the oscillatory solution, let

(35)

The equation of motion becomes

h'' + _' - sin _ cos _ _ 0 (36)
x

where _ _ 0 as x _ _. Note the change in sign from equation (17).

Consider first the significance of the parameter k2 • Multiplying by

_' and integrating once in equation (36) gives

where

and

_,_(x)= _ i1 - _(x) cos_ _(_)] (37)

_(x) -- _i_ (38)

I - 2ki 2 _/x

ki2 _- i (39)
_,_(_)+ cos_ _(_)
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Since it is required that _(x) die out to zero for large x, one finds

that for the nonoscillatory case, k2 _ i as x _ _. Then ki 2 must

always be less than unity. With k2 < ! for all x, there is no point

_, as there was in the oscillatory case, at which the solution changes

type. Nevertheless, it will be found useful again to divide the solution

into two parts - the initial behavior and the asymptotic behavior. Here_

however, the point at which the two solutions are joined may be chosen

merely on the basis of convenience.

Initial behavior: Integrating equation (36) twice yields

x
_(x)= _(_)+ _,(_) logx _ u logu sin _ cos _ du

x
(So)

The approximate solution to equation (40) is obtained again by successive

substitutions. To the first approximation

_:(x) = _(_) + _'(_) log _ (41)

To the second approximation

m(x) = _:(x) - M(x) (42)

where

M(x)= u log2 sin n:(u)cos n_(_)du (43)
x

Note that the solution given for L(x) (eq. (25)) applies also to M(x)

where now c = 2_'(_) and [(_) is replaced by _(a). A convenient

stopping point for the initial behavior is the value of x at which the

first approximation, equation (41)_ passes through zero. For then, with

_(_) > 03 the second approximation yields a small positive value at this

point, which provides the necessary starting value for the nonoscillatory

asymptotic behavior; that is_ _ approaching zero from above as x _ _.
Let the value of x be x = T. Then

T = me-_(m)/'m_'(m) (4_-)

Asymptotic behavior: The substitution

sir: _ = g,(x) (_S)

,,,/1 + ga(x)

in equation (36) yields
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2gg '2 g'
g'' - ' + - -- 0

i +g2 -_- g

which is to be compared with the differential equation for the zero-order

Bessel function of imaginary argument. Casting equation (46) in the form

of an integral equation gives

g(x) -- CIo(X) + DKho(x ) - _m({) [Io(x)Kho({) - Kho(x)lo({)]d _

(47)

where

m(x) -- 2g(x)g'2(x)

1 + g2(x)

and the notation for the Bessel functions follows that of Jeffreys
(ref. ii). Then to a first approximation

g(x) _ CIo(X ) + DKho(x ) (_)

It is recalled, however, that _(x) must approach zero as x _ _3 whereas

lo(x) _ _ as x _ _. Therefore, C must equal zero. Then there is only

one arbitrary constant, D 3 and this is as it should be, since for any

_(_) there is only one _'(_) that will bring the motion to rest at a

given odd multiple of _. That is, when _(_) is specified, _'(_) is

determined 3 or vice versa. Finally, the constant D is to be determined

by matching equation (48) to the solution for the initial behavior,
equation (42), at x = T. This calculation will provide the means of

determining the relationship between _(_) and _'(_), which in turn

determines the appropriate value of n to be used in the initial

condition e(_) of the oscillatory solution.

Relationship between _(_) and _'(_): Matching equations (42) and

(45) in magnitude and slope at x = T yields two expressions

sin _(T) =

_,(_)_-

DKho (m)

[l + _mo2(T) ]_m

i + _iho_(_-)

(49)

where, from equation (42)
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_(T)---M(T) }
_'(T)= _ - M'(T)

T

(_o)

E!iminatin_ D yields

sin 2_(T) _ Kho(T) = -sin 2M(T) (91)

, 2_ _, ("r)

Since T = _e -_(_)//_h' (_) it is the solution of equation (_l) which

gives the desired relationship between _(_) and n'(_). Without additional

approximation, equation (51) must be solved by trial and error. Further

simplification, however, will reveal the nature of the relationship.

Since _(T) is small

si._..2s(._.)._m(_) ~ _M(_) (s2)
2s,(<) s,(_) _s,(_)- _M,(<)

Also, for any value of T not close to zero

mo(T) ~ i (_3)

Equation (52) becomes

T

which may be written, using equations (41) and (43)

u i sin 2(a + b log u) du --2b (95)u og T T T

with

a = 'rl(_:) - _:h'(_) log _: =-_:'rt'(_) log "r

b = _,(_)

The change in variables u = _T gives
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og _- sin (2b log _) d_ ---
T3

T

(56)

Since _/w is small (the order of 0.i for the cases studied in ref. 6)

and the integrand is near zero for small 9, extending the lower limit

of the integral to zero causes only a small error. Let y = 4(1 + b2).

The integration then leads to a quadratic equation in y

- T2y - 4T s -- 0 (57)

The approximate relation between 3(_) and _'(_) is of the form

_q'(_) : ¥ + - 1

where, for the radical to be real, T > 1.319. It is of interest to note

the implication of equation (58) that-- a_'(_), when written as a function

of the parameter T, may be independent of _, at least for small values

of _. To investigate this possibility, as well as the accuracy of

equation (_8), the relationship between _(_) and _'(_) was also obtained

for several values of _ by a trial and error procedure of numerically

integrating the Pain!evg equation (36). 5 The results, plotted as a

function of T, are shown on figure i together with the approximate

solution, equation (_8). A close inspection of the curves reveals that

the numerical results contain oscillatory components which grow as

increases. Over the range 0 < _ < 0.3, however_ the curves are essen-

tially identical. It is surprising to note also that despite the many

approximations involved in the derivation of equation (58), the solution

adequately describes the form of the numerical results. Of course, in

use, the numerical results are to be preferred over equation (58). The

result is used as follows: Observing that 2_'(_) = -_'(_), one uses

figure ! to prepare a curve of 2_(_) versus _'(_) such as shown in

sketch (d). Suppose, for example, it is given that _(_) = _/2,

_'(_) = _i. Since 2_(_) is equal to _(_) - _(_), where _(_) must be

an odd multiple of _ (eq. (35)), one finds from the curve that the

vehicle will come to rest at _(_) = _ (i.e., 2_(_) : _/2) for an initial

angular velocity of _I'(_), whereas for an initial angular velocity of

c_'(_) the vehicle comes to rest at _(_) = 3_ (i.e., 2_(_) = 9_/2).

Then it is indicated that for _(_) = _/2_ any initial angular velocity

between _l'(a) and c_a'(_ ) will cause the vehicle to oscillate about

= 2_. The given value _I lies between these limits; hence, the
5The general solution of equation (36) contains two arbitrary

constants whereas for the solutions required here the constants are inter-

dependent. The numerical integration therefore entailed a trial and error

procedure wherein for each _(_) chosen the value of _'(_) was varied

until the specific _'(_) was found which caused the solution _(x) to

approach zero asymptotically within a specified error.
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appropriate value of n to be
used in the oscillatory solution
is n = i. As a second example_
suppose again that
_(_) = _/2, but that _'(K)

is a smaller value_ _2, such

that in equation (20), ki2 > i.

As indicated on the sketch, the

initial angular velocity

_l'(_) brings the vehicle to

rest at _(_) = _j whereas the

initial angular velocity

_s'(_) brings the vehicle to

rest at _(_) = -_. Since _2

lies between _i'(_) and

_s'(_), it is indicated that

_(_) = 0; hence, n = 0.

Since ki2 > i_ one uses

equation (34 ) alone for the

oscillatory solution as

previously noted.

as'!K)

-2"_-

2W (,{)

4"_'

27r.

i

Sketch (d)

a' (K)

T

Finally, to complete the nonoscillatory solution_ having determined

from figure i, one finds the constant D for use in equation (48) from

D - I tan _(T) (59)
mo(T)

Summary of equations:

_ <x<T:

x _ M(x)_(x)_ _(_)+ _'(_) log

M(x) -
r-

K2
_[2 sin 2_(_)- c cos2_(_)]Zogx

2(4 + c2) L

x cp + sin [2TI(:_) - qO]- sin 2_(_) + c log _- -

c = 2_'(_)

> (60)

4c
sin <p-

_$ + c 2

4 - 0 2

cos _-
+ C 2

"T = me-7](m)/m'Q'(m)
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T <X:

Approximate _' (_) :

q(x) = sin-!

D ----l--l t_n q(T)
no(T)

(61)

_q'(_) = _]_ <l +_- 1 ] T >1.319 (62)

Numerical Comparisons

In assessing the adequacy of the analysis presented here_ it is

necessary to note that two sorts of approximations are involved: First;

the Painlev@ equation is itself an approximation to the complete equations

of motion_ and_ second_ it was necessary to introduce additional approxi-

mations to obtain analytic solutions of the Painlev@ equation. To deter-

mine whether the final results are still of sufficient accuracy to be

useful_ numerical results will be compared with a few of the results of

reference 6_ in which no approximations were made_ either to the equations

of motion or to the aerodynamic forces and moments. This comparison will

also afford a means of demonstrating the use of the analytical results.

Calculation of parameters.- The vehicle studied in reference 6 had

the following physical properties

i = 8.296 ft2

I = 9.6 lb-ft-sec 2

z ==3.25 ft_. jCmmax -0.187o

(63)

Flight conditions on entering the Martian atmosphere were

Yi = 800_000 ft

V i = 21_042 ft/sec (64)

7i = 41.5 °
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A semilogarithmic plot of the dynamic pressure history, taken from

reference 6, is given on figure 2. It is clear from the figure that

equation (8) is an excellent approximation of the dynamic pressure history

almost until the time at which q becomes maximum. It is indicated that

the analytical results should be applicable over at least the first

45 seconds of flight after entry. The values of qi and _v i are obtained

from the initial value and slope of figure 2. The parameter _ is then

calculated from equation (i0).

qi - 1"23 >ilO-_ ib/ft2 ]

_v i _ s = 0.30 per sec I (6_)_ 0.222

Case i.- Consider first a case representative of the results

presented in reference 6. Let

CLi " --_ l

_i = 12°/sec _ 0"2094 radian/sec

2
_'(_) = _-_ &i = 6"29

(66)

The first step in obtaining the analytical solution is to determine the

value of _ about which the vehicle ultimately oscillates. Figure i is

used to prepare a curve of 2_(_) vs. _'(_). The result for _ = 0.222

is given on figure 3 (only one branch of the curve is shown since _(_)

is antisymmetric with respect to _'(_)). With _(_) = -_, it is found

from figure 3 that the vehicle will come to rest at _(m) = _ (i.e.,

2_(_) = 2_) for _'(_) = 12.1, whereas the vehicle will remain at rest

at _(_) = -_ (i.e., 2_(_) = 0) for _'(K) = 0. Since the given initial

rate _'(_) = 6.29 lies between these limits, it is indicated that the
vehicle will oscillate about _ = 0. Then n = 0 in equation (16). One

then uses equations (33) and (34 ) to compute the motion. The results are

shown on figure 4, compared with the result of reference 6 and the result

of numerically integrating the Painlev@ equation, equation (17). It will
be observed first that the numerical solution of the Painlevg equation is

capable of accurately depicting the exact result. Also, while the

approximate analytical solution of the Painlev6 equation introduces an

additional error, it does not appear to be of serious magnitude. A useful

measure of the agreement between the three results is the magnitude and

time of occurrence of the first peak of oscillation; the numerical solu-

tion of the Painlev6 equation gives 55 ° at 17.5 sec, the approximate

solution gives 60 ° at 17.1 sec, whereas the exact result is 57° at

17.8 sec.



24

Case 2.- As a second example, consider an extreme case where the

vehicle is given an initial angular velocity several times larger than

those within the range of values considered likely in reference 6. Let

_i = 0

&i = 86°/sec = 1.5 radians/sec (67)

_,(K) = _5.o5

For the analytic solution, reference to figure 3 reveals that the vehicle

would come to rest at 2_(_) = _(_) = 13_ for _'(_) = 50.6, and at

2_(_) = _(_) = !i_ for _'(K) = 44.4. Since the given initial rate

_' (K) = 45.05 lies between these boundaries, it is indicated that the

vehicle ultimately oscillates about _ = 12_; that is, n = 6 in

equation (16). The motion is computed from equations (33) and (34). The

results are shown on figure _. Only the last part of the tumbling motion

is shown, since over the initial portion of the time interval during

which the vehicle tumbles, all three results indicate the same thing,

namely that _(t) z _i + kit- It is evident from inspection of figure 5

that even for this extreme case, the numerical solution of the Painlev6

equation is in adequate agreement with the exact result. The approximate

analytical solution for tumbling (eq. (24)) properly indicates the large

change in curvature that occurs just before the vehicle passes through

ii_, but fails to predict its full extent. As a result, the analytical

prediction of the first peak of oscillation is in error by some 27 ° .

The marked slowdown of the motion at the odd multiple of _ is caused by

the fact that _'(_) is very near its lower boundary (cf., fig. 3); that

is, the vehicle tends to dwell near its position of unstable equilibrium

at ii_. Using the next approximation for the tumbling motion, equation

(26), brings the analytical solution more closely in line with this

behavior. Nevertheless, this result should be taken as warning that

both the numerical solution of the Painlev@ equation and the analytical

prediction will become progressively less trustworthy as _'(_) approaches

nearer and nearer one of its boundary values. In fact, since the agree-

ment between a curve such as figure 3 and the exact curve will not be

perfect, eventually it can happen that while one curve indicates the

vehicle will oscillate about some multiple of 2_, the other curve may

indicate the vehicle will oscillate about one higher or one lower multiple

of 2_. On the other hand, the condition where the vehicle tends to or

actually reaches a position of unstable equilibrium generally can be

disregarded on practical grounds, for the reasons discussed in reference 6.

For the remaining cases, solutions of the Painlev_ equation should give

results of the order of accuracy illustrated in figure 4.
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CONCLUDING REMARKS

An analytical study has been made of the tumbling motions of vehicles

entering planetary atmospheres. A simplified differential equation govern-

ing the tumbling motion_ its arrestj and the subsequent oscillatory motion

was obtained and identified as the equation for the fifth Painlev_ tran-

scendant. An approximate analytical solution for the transcendant was

derived. Results from this solution were compared with numerical solutions
• E

of the Pamnleve equation and with solutions obtained from numerical inte-

gration of the exact equations of motion. The results for angle-of-attack

history indicated that both the numerical solution of the Painlev_ equation

and its approximate analytical solution were of sufficient accuracy to be

of use in practical computations.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field_ Calif._ July 17_ 1962
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